October 27, 2023

PINE PLAINS PLANNING BOARD SPECIAL MEETING MINUTES
Wednesday, October 25%, 2023
7:30 PM
In Person and Zoom

IN PERSCON ATTENDANCE: Michael Stabile, Chairman
Al Blackburn
Scott Cavey, Alternate
Ethan DiMaria
Dick Hermans
Kate Osofsky
Steve Patterson
Vikki Scracco

Z00M ATTENDANCE :

(Members attending via Zoom do not count towards the quorum or
voting.)

ABSENT:

ATL.SO PRESENT: Warren Replansky, Town Attorney, in person
George Schmitt, Town Engineer, in person
Sarah Jones, Town Liaison, in person
Sarah Yackel, BFJ Planning, in person
Andrew Gordon, Carson Power, in person
Alicia Legland, Carson Power Counsel, via
Zoom
John Lyons, Land Use Attorney
Members of the Pubiic, in person

Chairman Stabile opened the meeting at 7:30 pm with a gquorum
present.

Carson Power Special Use Permit (SUP) and Site Plan: Stabile
let everyone know the board just had an attorney/client session
prior to the meeting where the becard could ask Replansky legal
gquestions, etc. - no decisions were made during this meeting.

Stabile saild the public hearing was closed at the last meeting
but the board has continued to receive public comments. Lyons
sald the Berkeley ILab Study was a document not prepared for his
clients, it was a submission to notify the board regarding a
study in existence already in the public realm. Therefore he
feels it wasn’t a submissiocon of public comment. Replansky said
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anything submitted after the close to the public hearing should
be rejected by the becard, including that study. Stabile asked
if those included materials discovered via the board’s own
research — Replansky said those can always be used. Stabile
said he received the Berkeley Study from board member Patterson
prior tec the pubklic comment submissicn. Replansky said if you
accept it then you would alsc need to accept the submission from
the applicant’s attorrney regarding the study. Stabile did not
have an issue with this. Replansky said technically it is a
violation of the open meetings law. He suggests rejecting
anything received after the public hearing to not be part of the
record. DiMaria asked where that leaves the beoard with their
own research that hasn’t been submitted. Replansky said they
have to make if part of the record. Stabile asked what happens
if they do make the study part of the record. Replansky said
then you have to accept the comments from the applicant’s
attorney. Replansky again said he recommends not accepting
anything after the public hearing. Lyons said the board came to
knowledge regarding the study prior te the submission from
Forelle — so the board could reject Forelle's letter, but not
the study.

Legland, the applicant’s attorney, said the submission of the
study was inciuded with a memo that was an argumentative
gubmission for the public record. For the balance of eguities,
and to ensure an adequate record, the applicant felt it was
necessary to submit a submission regarding that memo.

Legland =said the study was also provided to the beoard in a memo
from BFJ to the planning board. Stabile thought the board
should accept the study, but not the comment surrounding it.

Hermans made a motion to accept the Berkeiey Study, with no
attorney rebuttal and/or comments regarding it after the public
hearing, second by DiMaria, all in favor, motion carried.

Stabile asked Replansky since the beoard is discussing the study
now, could the applicant’s attorney ncow submit their comments.
Replansky replied that would be appreopriate.

The board then reviewed the study (see attached). Hermans said
one thing that popped out at him in this study is they said they
did an abstract of existing literature that said the previous
studies had mixed resuits which led them to apply for the grant
to do the Berkeley Study. Hermans said they pointed out that
they only lcooked at property values and that there are other
factors that impact The lccal ecconomic impact of solax
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installation, such as taxes and employment, that consistently
show a positive benefit. This shows that homecwners can
benefit from renewable energy into home prices. Stabile said
the conservation easement also has a positive effect. Hermans
doesn’t feel the numbers in the study are significant. Hermans
salid the fluctuaticon of house prices is an elastic thing that
affects everyone.

Patterson said he agrees with Hermans. The report is a
generalization and he agrees with the planners that property
values are inconclusive and should not be a reason to deny the
application. Patterson also feels it is important to note that
it will be put into a ccnservation easement. The cother board
members agreed as well.

Stabile said Patterson researched other cases and asked him to
say what he found. Patterson said there is no imperialized
evidence regarding decreased property values, so generalized
complaints from neighbors, and generalized studies, etc. is
insufficient te deny an application.

The hcard then reviewaed the edited BFJ Memo with conditions,
should a resolution be drafted {see attached).

Stabile asked Replansky how tc ensure that the conservation
easement happens. Replansky replied that it would be a
condition of the approval and that Scenic Hudson has appeared
before the board. Replansky said he would like to see the
actual conservation easement and review it with the board and
that he can alsc expand on the conditicns. Replansky said he
will see the easement after a conditional approval.

Hermans asked about the PILOT agreement. Replansky said the
town beard will be negotiating it, but it will need to bs in
place.

Stabile said Weaver, the town ZEQ, is leaving so he is concerned
about who will be monitoring the tree cuttings. Jones said the
town is working on getting a replacement. Schmitt said
sometimes another town can step in temporarily to help, but
there will need to be a ZEO eventually. Schmitt said they can
monitor it as well, but that they are not code enforcement.
Stabile asked Replansky to make sure the language is in the
resolution sc there is encugh room if the town needs to hire
Schmitt, etc. to asgist.
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Stabile asked abcocut having a beekeeper if the town can find
someone willing to do so on the site. Gordon replied he doesn’t
feel it would be an issue but in all likelihood there will be a
lease with a farmer for the property and that may be in
conflict. Stabile asked that they accommodate one if found and
Gordon replied vyes, as long as they are insured, etc.

Stabile asked for a motion to direct Replansky to draft a
resolution approving the site plan and special use permit,
motion by Blackburn, second by Patterscon, roll call vote:
Blackburn aye, DiMaria aye, Patterson aye, Soracco aye, Osofsky
ave, Hermans aye, Stabile ave, all in favor, motion carried.

Stissing Farms: Stabile said the board is now going to pass a
resclution (see attached) with the agreement they made with
Stissing Farms regarding issuing Certificates of Occupancy.
Stabile asked for a motion to pass the resclution, motion by
DiMaria, second by Patterson, roll call vote: Blackburn aye,
DiMaria aye, Patterson aye, Soracco aye, Osofsky ave, Hermans
aye, Stabile aye, all in favor, motion carried.

Approval October Meeting Minutes: Motion by DiMaria to accept
the October meeting minutes, second by Blackburn, all in favor,
motion carried.

DiMaria said he found an issue with the daycare — there is a
very invasive species, Japanese Knot Weed, right where the
playground will be placed. He asked Replansky if it was in the
planning board’s purview tec have her remove it. Replansky said
something can be put in the finalized resolution.

Motlon to adjcurn at 8:26pm by DiMaria, second by Patterson, all
in favor, motion carried.

Respectfully submitted by:

Tricia Deavine Michael Stabile
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ARTICLE INFO ABSTRACT

Keywords: We examine the impact of large-scale photovoltaic projects (LSPVPs) on residential home prices in six U.S. states
Solar energy that account for over 50% of the Installed MW capacity of large-scale solar in the U.S. Our analysis of over 1,500
Property values LSPVPs and over 1.8 million home transactions answers two questions: (1) what effect do LSPVPs have on home
gc"‘:s:::}’ieng;‘;?; prices and (2) does the effect of LSPYVP on home prices differ based on the prior Jand use on which LSPVPs are

located, LSPVP size, or a home’s urbanicity? We find that homes within 0.5 mi of a LSPVP experience an average
home price reduction of 1.5% compared to homes 2—4 mi away; statistically significant effects are not
measurable over 1 mi from a LSPVP, These effects are only measurable in certain states, for LSPVPs constructed
on agricultural land, for larger LSPVPs, and for rural homes. Our results have two implcations for policymakers:
(1) measures that ameliorate possible negative impacts of LSPVP development, including compensation for
neighbors, vegetative shading, and land use co-location are relevant especially to rural, large, or agricultural
LSPVPs, and (2) place- and project-specific assessments of LSPVP development and policy practices are needed to

Difference-in-difference

understand the heterogeneous impacts of LSPVPs.

1. Introduction

Large-scale photovoltaic projects (LSPVP), defined here as ground-
mounfed photovoltaic generation facilities with at least 1 MW of DC
generation capacity, are an increasingly prevalent source of renewable
energy. LSPVPs accounted for over 60% of all new solar capacity in the
United States in 2021, and, as the largest resource by capacity in
interconuection queues, are projected to contnue growing (Belinger
et al., 2021). However, the local economic impacts of LSPVPs are poorly
understoad (Mai et al., 2014), despite surveys showing that local public
support for large-scale solar is strongly related to perceived economic
impacts, including the impact on property values (Carlisle et al., 2014),
Concerns surrounding the property value impacts of solar power are
reflected in solar industry and environmental advocacy communication
that challenge the conception that solar power reduces property values
(Center for Energy Education, n.d.; Solar Energy Industries Association,
2019), and in attempts by neighbors of solar plants to claim solar panels
as a private nuisance (Westgate, 2017).

The purpose of this paper is to provide some of the first compre-
hensive evidence on the impact of LSPVPs on residential home values.
Specifically, we seek to answer two relaied research questions; (1) what

* Corresponding author,
E-mail address: bhoen@ibl.gov (B. Hoen).

htips://dol.org/10,1016/j.enpol, 2023.113425

effect, if any, do LSPVPs have on residential home prices and (2) does
the effect of LSPVPs on home prices differ based on the prior land use on
which a LSPVP is located, the size of the LSPVP, or the urbanicity of a
home’s location? To address these questions we use data from CoreLogie
on over 1.8 million residential property transactions that occurred
within six years before and after a LSPVP was constructed in the five U.S.
states with the highest concentration of LSPVPs as measured by number
of installations; California (CA), Massachusetts (MA), Minnesota (MN),
North Carolina (NC), and New Jersey (NJ), as well as in Connecticut
(CT), chosen for its relfatively high population density (i.e., urbanicity)
near LSPVPs. We then combine the transaction data with other geo-
spatial datasets including an original dataset of LSPVP footprints
developed by the project team for this research, a suite of environmental
amenities and dis-amenities, urban, rural, and suburban classifications,
and historic land cover data. We identify the arguably causal impact of
LSPVPs on residential property values using a difference-in-differences
identification strategy that compares the sale price of residential
homes located in close proximity to a LSPVP (e.g. 0-0.5 miles away)
both before and after a LSPVP is constructed to the sale price of homes
located farther away from a LSPVP {e.g. 2—4 miles away),

Qur paper males several important contributions, First, we examine
the impaets of LSPVPs in a large set of U.S, states that account for the
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Abbreviations

A/D amenities and dis-amenities

API Application Programming Interface
CA California

CT Connecticut

DC direct current

dB decibel

DiD difference-in-difference

EIA Energy Information Administration
FE fixed effects

GHG greenhotse gas

LSPVP  large-scale photovoltaic project
MA Massachusetts

MN Minnesota

MW megawatt

NJ New Jersey

NLCD National Land Cover Database
NY New York

NG North Carolina

PV photovoltaic

RI Rhode Island

RPS Renewable Portfolioc Standard
SB Senate Bilf

UK United Kingdom

u.s. United States

USDA  United States Department of Agriculture

majority of U.S. LSPVP capacity, most of which, to cur knowledge, have
not previously been studied with respect o the impact of LSPVPs on
property values. Existing research on the property value impacts of
LSPVPs provides mixed results from a limited set of geographies, Where
researchers do find an adverse impact of LSFVPs on property values, as
in studies from the Netherlands and from the U.S. states of R), MA, and
NG, they theorize a change in property values due to visual intrusion
from panels (Abashidze, 2019; Droes and Koster, 2021; Gaur and Lang,
2020) and land use change (Gaur and Lang, 2020). Conversely, one
study based in the UK, finds no statistically significant effect of LSPVPs
on property values (Jarvis, 2021). Expanding the geographic scope of
the literature, then, facilitates both generalization (Brinkley and Leach,
2019) and more location-specific policy insights,

Second, we investigate whether the effect of LSPVPs on home prices
is heterogenous with respect to LSPVP area, prior LSPVP land use, and
home urbanicity. One of the major concerns surrounding LSPVPs, as
well as one of the major opportunities to explore the co-benefits of
L.SPVP development, are its land use requirements (Hernandez et al,,
2014a; Hernandez et al., 2014b; Katkar et al,, 2021). In particular, more
adverse home price impacts might be found where LSPVPs displace
green space (consistent with results that show higher property values
near green space (Crompton, 2001)) or where LSPVPs are larger in area,
and thus more visually intrusive, While some previous studies (Gaur and
Lang, 2020) find that greenfield solar development is primarily
responsible for their observed decrease in home prices when compared
to brownfield development, our constructed dataset of LSPVP feotprints
allows us to more precisely identify the prior land use of a LSPVP (for
instance, breaking up the “greenfield” category into agricultural and
non-agriculturat land uses), Our dataset of LSPVP footprints additionally
allows us to accurately characterize the area of each LSPVP.

In section 2, we introduce the policy context for LSPVP development
in the study area and review the existing literature on property value
impacts of LSPVPs, In section 3, we detail the data used in this study, the
geospatial methods used to combine datasets, and the difference-in-
differences approach to assessing property value impacts of LSPVPs. In
section 4, we present our base model, event study, and heterogeneity
analysis results. In section 5, we summarize and discuss our findings. In
secton 6, we note the limitations of our study and describe avenues for
future work. Finally, in section 7, we review the key conclusions and
policy implications of our study.

2. Background and relevant literature
2.1. Policy context
The study area is defined as the six states of CA, CT, MA, MN, NC, and

NJ. The states in the study area were chosen based on number of in-
stallations: CA, NC, MA, MN, and NJ represent the top five states in

terms of number of >1 MW DC solar installations through 2019.
Together, these states contain over 2,000 solar projects, or approxi-
mately 53% of the total MW DG capacity in the United States through
2015, We additonally include CT because of its relatively high popu-
lation density near solar projects (U.S. Energy Information Administra-
tion, 2021a).

All six states face increasing demands for large-scale solar along with
intensifying land use and permitting constraints on solar development,
Both CA and CT have ambitious Renewable Portfolio Standards (RPSs),
aiming for 100% of electricity retail sales to be supplied by renewable
sources by 2045 and 2040, respectively (Schwartz and Brueske, 2020; U,
5. Energy Information Administration, 2021a). In CA, this necessitates,
by some estimates, a tripling of California’s renewable energy produc-
tlon; of those possible renewable resources, solar PV is both the least
expensive and has the largest technical potential in the state (Schwartz
and Brueske, 2020). Though MA, MN, and NJ have less ambitious
renewable energy development goals, state reports still estimate that
building solar PV is a key strategy to meeting both MA and MN’s GHG
reduction and renewable electricity sourcing targets {(Jones et al., 2020;
Putnam and Perez, 2018), and NJ introduced legislation in 2021 that
atms to double existing solar installations through incentives (NJ
Department of Environmental Protection, 2021}, NC's solar future is less
definite: although the state has, historically, been a leader in solar in-
stallations, the dominant electric utlity in the state, Duke Energy, has
proposed an integrated resource plan that largely privileges fossil gen-
eration over renewables. This plan is currently under review by the NG
Utility Commission, with challenges from multiple environmental
groups (Southern Environmental Law Center, 2021).

State reports identify persistent LSPVP land use and permitting
challenges. In CA, for instance, San Bernardino county voted to ban
utility-scale solar farms on over a million acres of private land (Schwartz
and Brueske, 2020), citing concerns about the industrializing impact of
solar projects on rural or desert landscapes (Roth, 2019). Tradeoffs be-
tween land use and LSPVP development are also observed at the state
level in CT, MN, and NJ. In CT, Public Act 17-218, enacted in 2017,
limits PV development on forest and prime farmland’; this has resulted
in a reduced number of approved commercial PV projects per year (CT
Councit on Environmental Quality, 2020). Before the passage of this act,
in 2016, the CT Council on Environmental Quality reported that solar PV
was the single largest type of development displacing agricultural and
forest land (CT Council on Environmental Quality, 2017). MN, too,
prohibits solar development on prime farmland: the state’s Prime

! Both CT Public Act 17-218 and the MA Prime Farmland Rule cite 7 CFR 657
for the definition of “prime farmland”; 7 CFR 657 is a periodically updated set
of federal regulations, administered by the Department of Agriculture, that
defines prime and important farmlands (Legal Information Iestitute, n.d.).
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Farmland Rule includes solar development as one of the prohibited in-
dustrial uses of select agricultural land (Bergan, 2021), The MN Prime
Farmland Rule is currently being contested: legislation that allows more
PV development on farmland is now under consideration in the MN
legislature (Bergan, 2021), and the MN Department of Commerce has, in
the past, issued guidance for developers on how to make their case for an
exception to the rule (Birkholz et al., 2020}, In NJ and NC, too, conceins
about farmiand preservation and LSPVPs have appeared in discussions
among agricultural stakeholders, although neither state has adopted
prime farmland legislation like CT or MN {(American Farmland Trust,
2021; Cleveland and Sarkisian, 2019). In MA, state reporis refer to siting
difficulties due to high population densities, expensive land for devel-
opment that is disconmected from transmission, and opposition to
disturbance of natural land {(Jones et al.,, 2020).

In summary, while LSPVP installations are prevalent in the six states
analyzed in this, these states also represent regions where an increasing
need for LSPVP is met with restrictions, opposition, and land-use
tradeoffs, These restrictions are often specific to farmland, although
concerns do extend to other landseapes (like high density areas, deserts,
and forests), Investigating property value impacts of LSPVPs, both
overall and by prior land use and instatlation size, can potentially pro-
vide policymakers, practitioners, and developers with valuable infor-
mation on how LSPVPs affect residents’ willingness to pay for properties
located near LSPVPs. To the extent that these concerns represent
possible burdens of LSPVP development, investigating property value
impacts of LSPVPs also helps us understand how these burdens are
distributed. These insights, in twn, can guide policy or best practices
that seek fo mitigate adverse impacts of LSPVP development to enable
build-out that meets climate and clean energy goals.

2.2, Relevant literature

The property value impacts of LSPVPs have received only recent,
limited attention (Abashidze, 2019; Al-Hamoodah et al.,, 2018; Droes
and Koster, 2021; Gawr and Lang, 2020; Jarvis, 2021). Studies on
LSPVPs and property values employing difference-in-differences (DiD)
analyses find mixed results. Studies based in the U.S., specifically, MA
and RI (Gaur and Lang, 2020) and NC (Abashidze, 2019), and the
Netherlands {Drbes and Koster, 2021), find a statistically significant
negative effect for homes near solar projects compared to homes further
away. One study, based in the U.K,, finds no statistically significant ef-
fect of LSPVP proximity on home property values (Jarvis, 2021).
Although none of the existing studies find evidence of an increase in
sales prices for homes near solar projects, Abashidze (2019) finds an
increase in agricultural land value for land in close proximity to trans-
mission lines after a solar farm is built in the area, To our knowledge,
only Gaur and Lang (2020) investigate the impact of prior land use using
a DID framework, finding that greenfield solar construction is associated
with a statistically significant reduction in sale prices in both rural and
non-rural areas, with greater reductions observed in rural areas. One
study using a contingent valuation survey finds that respondent will-
ingness to pay for large-scale solar developments is a function of prior
land use, where brownfield solar developments are more desirable than
greenfield developments {Lang et al., 2021). Both Jarvis (2021) and
Abashidze (2019) find no evidence of heterogeneity in home price im-
pacts by income or other socic-economic indicators.

The mixed results to date in the LSPVP and property value literature
motivates studies that look at previously understudied geographies to
develop a more comprehensive view of the possible property value
itnpacts of LSPVPs. The existing literature also orlents us to relevant
heterogeneity analyses, including heterogeneity by prior land use. We
extend this literature by looking at a more specific set of prior land uses
beyond greenfield and brownfield, as well as by looking at heterogeneity
of effects by LSPVP size and urbanicity.

3. Methods
3.1. Data

This project utilized five major sources of data, shown on the left-
most side of Fig. 1. First, to characterize and locate LSPVPs, we uti-
lized the U.8. Energy Information Administration’s Form 860 (U.S. En-
ergy Information Administration, 2021b), which provides
hatitude-longitude data on solar plants, their installed capacities (in
megawatts, MW), and their operation start date. We kept only solar
plants within the study area with an installed capacity over 1 MW and
eliminated rooftop installatons, leaving us with 1,630 solar plants.
Second, to understand the impact of prior LSPVP land use on property
values, we used land use data from the United States Geological Survey
(USGS)'s Multi-Resolution Land Characteristics (MRLC) Consortium’s
National Land Cover Database (NLCD) from 2006 {Multi-Resolution
Land Characteristics Consortium, 2006), Third, for information about
home sales, we used transaction data from Corelogic (CoreLogic, n.d.),
which provided information on location, property characteristics and
transaction characteristics. We filtered this dataset for only relevant,
complete records; the criteria used to screen data are outlined in
Table A.1. Fourth, to identify amenities or disamenities (herein referred
to as A/D]}, or landscape characteristics that could positively or nega-
tively impact the price of a home, we used the data sources summarized
in Table A.2. Finally, to understand the impact of urbanicity on property
value impacts, we used the U,8, Census Bureau'’s (U,S. Census Bureauy, n.
d.) urban-urban cluster-rural classification (a metric based on popula-
tion density, where urban areas are the most dense, followed by urban
clusters, then rural areas). These data sources were validated and
combined to produce a final analytic dataset. Fig. 1 graphically depicts
the data preparation steps, which we describe below.

Step 1: To obtain a polygon representation of each LSPVP from the
EIA point data, we first verified installation locations using satellite
imagery from Esri and DigitalGlobe and revised project centroid co-
ordinates where necessary. We manually drew polygons around the
boundaries of each LSPVP based on satellite imagery; for projects that
consisted of multiple, non-contiguous groups of panels, we drew a
multipart polygon around the boundaries of each group of panels. We
caleulated a construction start year for each LSPVP, assuming con-
struction begins one year before the BIA-provided operation start date.
Fig. A1 shows an example of two LSPVPs and their corresponding
polygons; Fig. 2 shows the location of LSPVP sites as well as the density
of transacted homes for the six states in the study area,

Additionally, in this step we determined the predominant prior land
use type of each LSPVP, We first determined the distribution of prlor
land cover types by area for each LSPVP; each LSPVP polygon is
composed of some proportion of the NLCD land cover classes shown in
the right-most column of Table 1 (15 of the 16 possible NLCD classes
showed up in our sample). Fach LSPVP’s distribution of NLCD classes
was grouped and summed as per the left-most column of Table 1, and
each LSPVP was assigned the predominant prior land use type that
constituted 50% or more of its land cover. If no single predorninant prior
land use type accounted for 50% or more of an LSPVP's prior land cover
by area, that LSPVP was assigned a predominant prior land use type of
“mixed”.? Fig. 3 shows (a)} the proportion of displaced LSPVP area and

2 Por instance, a solar installation on land that was, in 2006, 15% barren land,
25% cultivated crops, 25% herbacecus, and 35% hay/pasture, would be
generalized as 60% agrieulture and 40% greenfield, and would be given the
predominant prior land use type of “agriculture”, A solar installation on land
that was, in 2006, 15% barren land, 25% developed, high intensity, 25% her-
baceous, and 35% hay/pasture, would be generalized as 35% agriculture, 40%
greenfield, and 25% brownfield, a would be assigned the predominant prior
land use type of “mixed”, because no single category amounted to greater than
50%.
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Transaction count by state in final analytc dataset,

Number of transactions

State
more of the NLCD classes within a single predominant prior land use type.

CA
Predominant prior land NLCD classes T
use type MA
Agriculture Gultivated Crops; Hay/Pasture MN
Brownfleld Developed, High Intensity; Developed, Low Intensity; NG

Developed, Medium Intensity NJ

Greenfield Barren land; Declduous forest; Developed, Open Space; 6 state total
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933,037
34,313
291,325
75,394
204,134
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1,835,961

(b} the proportion of transactions near LSPVPs by predominant prior
land use type.

Step 2: For each home we calculated the geodesic distance to the
polygon boundary of the nearest LSPVP and to all A/D locations. We also
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determined underlying A/D characteristics, where appropriate, such as
flood zone status and road/airport sound levels. Finally, we determined
the urbanicity of each home’s location. Fig. 4 shows the distribution of
homes by state and urban, urban cluster, or rural designation,

Step 3: We validated the coordinates of select homes® that were sited
near LSPVPs or A/D using the Google Geocoding API (Google Maps
Platform, n.d.), which takes as input an address and returns a set of
coordinates as well as a precision indicator, We dropped from our
analysis any home transactions where there was inconsistency in the
coordinates between Corelogic and the Google Geocoding APL For
some homes, we replaced the CoreLogic coordinates with coordinates
from the Google Geocading AP where Google returned a high precision
indicator.’

Step 4: Given validated coordinates and distances, we retained only
the home transactions that were suitable for use in the final analysis.
Specifically, we eliminated (1) properties that host a LSPVP (Le, their
coordinates fall within the boundaries of a LSPVP polygon), (2) prop-
erties that are over four miles away from a LSPVP, and (3) properties
that transacted over 6 years before or after the operation start date of a
LSPVP. We also calculated three sets of key values used in the analysis:
the transaction’s project cohort, LSPVP distance bin, and years since
LSPVP construction.

¥ We selected properties that were <0.5 miles from an LSPVF or A/D; within
a flood zone with at least 1% chance of flooding, or within an area with road or
aviation noise exceeding 55 dB. Of the properties that satisfied these conditions,
only those with an area greater than 1 acre or those with missing or non-unique
coordinates were validated,

* We dropped home transactions from our analysis if the difference between
the coordinates provided by the Google Geocoding APIL and CoreLogic was
greater than 2 times the distance between that home and its nearest PV plant or
A/D. We additionally dropped any duplicate coordinates within 0.5 mi of a PV
plant. Where the Google Geocoding API returned a “rooftop” precision indi-
vator, we replaced the CoreLogic coordinates with Google coordinates; for those
homes, we recaleulated distances to LSPVP and A/D using the process described
in Step 2.

The project cohort refers to the unique ID of the LSPVP that is nearest
to a home transaction within 4 miles, and for which the operation start
date occurred up to 6 years before or after a LSPVP began constiuction.
If a given transaction belonged to more than one cohort, we retained
only the nearest project cohort for that transaction.” The distance be-
tween the transacted home and the nearest LSPVP was binned into 4
categories: [0 mi, 0.5 mi), [0.5 mi, 1 mi), [t mi, 2 mi), and [2 mi, 4 mi].
To calculate the number of years since LSPVP construction, we sub-
tracted the LSPVP year of construction start from the sale year (recall
that the construction start year is assumed to be the operation start year
minus 1 year), The years since LSPVP construction were categorized into
I-year bins (i.e. a sale occurred [—5 years, —4 years), [—4 years, —3
years), ...,[5 years, 6 years), [6 years, 7 years] since LSPVP construc-
tion). Our final analytic dataset consists of 1,836,053 transactions near
1,522 different LSPVPs.

Table 2 and Fig. 5 summarize the number of transactons, and the
number and size of LSPVPs, respectively, by state. The final dataset
contains a number of contnuous and categorical property and trans-
action characteristics (e.g. sale price, sale year, number of bathrooms).
Summary statistics for those continuous variables are shown in Table 3
for all six states; summary statistics for individual states are shown in
Table A.3 to Table A.8. The categorical property characteristic variables
are listed in Table A.9. Pinally, Fig. 6 shows the total number of trans-
actions within each distance bin by years since LSPVP construction and
indicates that the sample has a robust set of transactions in all distance
bins throughout the full sample period. While the home-level trans-
action data used in this study is protected by a non-disclosure agreement
and cannot be made publicly available, our dataset of LSPVP locations
and associated sizes and prior land uses is available on Github (Elmaliah
et al,, 2022).

5 In other words, if transaction T; is 0.5 miles from LSPVP; and 2 miles from
LSPVP;, and transacted within 6 years of the operation start date of both
LSPVYP; and LSPVPg, we consider transaction Ty to belong to the LSPVP; project
cohort.
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3.2, Model specifications

3.2.1. Buse difference-in-difference model

To examine the relationship between LSPVPs and residential prop-
erty values we utilized a difference-in-differences (DiD) identification
strategy that relates the timing of treatment (being close to an LSPVP
post construction) to home prices for homes located [0 mi, 0.5 mi), [0.5
mi, 1 mi), and [1 mi, 2 mi) away from a LSPVP. Specifically, we first
created 1,522 unique datasets, each representing a unique LSPVP and

the residential home transactions that occurred within four miles of the
LSPVP and transacted within 6 years before or after the first year of
operation of the LSPVP. We call each of these unique datasets a “project
cohort,” We then stacked the 1,522 project cohorts to create our final
analytic dataset and specify a stacked difference-in-differences specifi-
cation of the following form:

I (Piogige) =B T + Xy + 84 + At P Hep; + By 8]

The dependent variable in (1} is the natural log of sales price P for
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Table 3

Summary of dependent variables and property and transaction characterlstics in full analysts dataset.
Varlable Description Mean Std. dev. Min, Med. Max.
Sp Sale price ($) $406,552.22 $340,123.75 $5050.00 $321,000,00 $3,998,000.00
Lsp log of sale price 12.65 0.74 8.53 12.68 15.2
Lsf Living area (i) 1936.53 1602.05 102 1720.00 126,215.00
acres Land area (acres) 0.455 0.873 0,006 0,19 14.14
Age Age of home at time of sale (years) 44.08 30,86 0 40 212
agesq Age of home at time of sale, squared (years®) 2895.66 3708.86 0 1600.00 44,944.00
salesqr Quarter of sale 227 0.87 1 2 4
salesyr Year of sale 2015 3 2003 2015 2020

Count of
transactions

1oy

5 & -3 -z k!

1 2 3 4 5 & 7

Sale date - LSPVP construction date (years)

Distance between home and nearest LSPVF

2 o-e5m [T og-1mi

T oa-2mi

7770 2-4mi

Fig. 6. Count of transactions in final analysis dataset by distance between transacted home and nearest LSPVP.

residential home transaction i that belongs to a project cohort ¢ within
distance bin d and census block group j, that transacted in quarter g of
year t. Ty, is a vector consisting of 3 distance bin indicators for homes
located [0 mi, 0,5 mi), [0.5 mi, 1 mi), {1 mi, 2 mi) from a LSPVP, where
each distance bin is interacted with an indicator for whether the home
sale occurred after LSPVP constructon. The omitted category for the
distance bin indicators is homes located 2 to 4 miles from a LSPVP. 8,
Aw and p,, are, respectively, distance bin-by-project cohort fixed effects
(¥Es), transaction year-by-project cohort FEs and transaction quarter-
by-project cohort FEs. ¢; is a vector of census block group FEs, and
i 15 a random disturbance term. Finally, X, is a vector of individual
home characteristics including living square footage, land area, the age
of the home at the time of sale, age squared, the number of full bath-
rooms and stories, the type of air conditioning (AC) and heating, the
constructon type and exterior wall type of the home, indicators for
fireplaces and new construction, the type of garage, and the type of view
a home has. The standard errors in (1) are clustered at the project cohort
level,

The coefficients of primary interest in (1) are the § s which represent
the DIl» estimates of the effect of treatment (being close to an LSPVP post
construction) on home prices for homes located [0 mi, 0.5 mi), [0.5mi, 1
mi), and {1 mi, 2 mi) away from an LSPVP, respectively. Our DiD
identification strategy is both transparent and intuitive. Specifically,
each of the 1,522 project cohoris represents a unique quasi-experiment
where the treatment group is homes located within [0 ind, 0.5 mi), [0.5
i, 1 mi), and [1 mi, 2 mi) from a LSPVP and the control group is hames
located 2 to 4 miles from a LSPVP. For each of these 1,522 quasi-
experiments, our DiD framework then compares the sale price of
homes located close to a LSPVP to the sale price of homes located farther
away before and after LSPVP construction. The inclusion of distance bin-
by-project cohort FEs, 8, transaction year-by-project cohort FEs, g,
and transaction quarter-by-project cohort FEs, Pyes imply that our

estimates are identified based only on within-project cohort varfation in
sale prices and distance from a LSPVP. Our coefficients of primary in-
terest, g s, therefore represent the average treatment effect over the
1,522 guasi-experiments for homes located within each of our specified
distance bina.

Another advantage of our stacked Dib framework is that it avoids the
potential biases that can arise in standard DiD and event study models in
the presence of staggered timing of treatment with heterogeneous
treatment effects. Specifically, several recent studies have shown that
DIiD specifications relying on the staggered timing of treatment for
identification may be biased in the presence of heterogeneous treatment
effects due to the contamination of treatment effects from early versus
later adopters from other relative time periods (Callaway and San-
t"Anna, 2021; Goodman-Bacon, 2021; Sun and Abraham, 2021). As
discussed by Cengiz et al, {2019) and Goodman-Bacon (2021), our
stacked DiD model avoids this potential source of bias by ensuring that
treatment effects are based only on within-project cohort comparisons.

3.2,2, Robustness checks

We investigated the robustness of the base model given by {1} to the
choice of spatial FEs, time FEs, and treatment and control categories
with three alternative specifications. Qur {irst robustness chieck added a
distance bin for homes located within 0.25 miles of a LSPVP, Specif-
ically, we augmented the distance bins in (1) to include four {rather than
three) indicators for homes located in the [0 mi, 0.25 mi),5 [0.25 mi, 0.5
mi), [0.5 mi, 1 mi), and [T mi, 2 mf) distance bins; the indicator equals 1
if a transaction occurred within that distance bin in the same year or
after LSPVP construction started, and O otherwise. This specification
allows us to investigate the presence of a home price effect at even

6 A total of 6,252 transactions oecurred both within 0,25 mi of an LSPVP and
after that LSPVP was constructed.
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smaller distances. In our second robustness check we replaced the year-
by-project cohort and quarter-by-project cohort FEs in the base model by
a single vector of guarter-by-year-by-project cohort FEs to allow for
more granular trending of home values across quarters and years. In our
third robustness check we added the vector of A/D variables, consisting
of distance and value bins described In section 3.1 to account for any
potential correlation between the A/D variables and the timing and
location of a LSPVP that may blas our base model estimates.”

3.2.3. Event study model

In addition to the base model specification in {1), we specified an
event-study model, which allowed us to test the parallel trends
assumption underlying the difference-in-differences model and to allow
treatment effects to evolve non-parametrically post-construction. Spe-
cifically, we estimated a model of the following form:

7
In{Piog) = Z Ty + Xik + 8o -+ Aie + e + @5 + By (2}
k=—5

where Ty represents a series of lead and Iag indicators for when a
LSPVP began construction for each of the three distance bins defined in
(1). We re-centered Ty so that T always equals one in the year the
LSPVP began construction, We included a series of indicators from 1to 5
years prior to a LSPVP being constructed {T_g i to Ty 44), and a series of
indicators for 1-7 years after construction (Ty 4 to T74.). The omitted
category for our treatment indicators (1.e, the reference year for all es-
timates) is the year of construction start for a LSPVP (Toju). fyqs 15 2
random disturbance term and all other terms are as defined in (1),

The coefficients of primary interest in (2) are the y,s. The estimated
coefficients on the lead treatment indicators (y_g, ..., y_;) indicate
whether the parallel rends asswmption, which underlies all causal
claims based on DiD models, appears to hold, Specifically, if LSPVP
installation induces exogenous changes in home values, these lead
treatment indicators should be small in magnitude and statistically
insignificant, implying that the price of homes located close to a LSPVP
(within 2 miles) were trending in a similar way to homes located farther
away (2 to 4 miles) prior to LSPVP construction. The lagged treatment
indicators (ry, ...,vs) allow the effect of distance to a LPSVP on home
prices to evolve over time in the post treatment period in a non-
parametric way.

3.2.4. Heterogeneity analyses

We conduct four heterogeneity analyses using the baseline model
given by (1}. First, we examined potential heterogeneity across states by
estimating (1) separately for each of the six states in our sample, Second,
we investigated the relationship between prior LSPVP land use and
property value impacts by dividing cur sample into four groups: home
transactions near LSPVPs that were predomiinantly agricultural, green-
field, brownfield, or mixed land use prior to LSPVP construiction, Third,
we investigated the relationship between urbanicity and property value
impacts by dividing our sample into one of the following U.S. Census
Bureau designations; urban, urban clusters, or rural. Finally, we inves-
tigated the relationship between project size (area in square meters) and
property values by applying the base model (1) to two subsets of the
data: home transactions near LSPVPs below the 50th percentile of LSPVP
areas and above the 50th percentile of LSPVP areas, where the 50th
percentile is calculated from the set of unique LSPVPs in our sample.

7 Tor A/D distance bins, the omitted category is [2 mi, 4 mi) from a home; for
noise levels, the omitted category is the <45 dB category; for flood zone, the
omitted category is the missing category.

4, Results
4.1. Base model and robustness check resulis

Table 4 shows results for the base model given by (1) and the
robustness checks described above. As shown in column 1, we find an
average 1.5% reduction in house prices for homes within 0.5 miles of a
LSPVP that transacted post-LSPVP construction, and an average 0.82%
reduction in home prices for homes 0.5-1 mi away from a LSPVP, Both
estimates are statistically significant at the 5 percent level or better. As
shown in column 2, we additionally find an average 2.3% reduction in
home prices within 0.25 mi of a LSPVP. In both madels, the estimated
treatment effects for homes located 1 to 2 miles from a LSPVP are quite
small in magnitude and statistically insignificant, suggesting that the
impact of LSPVPs on home values fades relatively quickly with distance
from a LSPVP. Further, all effects are monotonically ordered from
closest distances to further away, which meets a priori expectations and
provides us additional confidence in the model. As shown in columns 3
and 4 of Table 4, altering the time FEs by including quarter-by-year-by-
project cohort FEs or controlling for other A/D does not notably alter the
estimates from the base model.

4.2, Event study results

In Fig. 7 we present results from our event study specification given
by (2}, with coefficient estimates of our three distance bins shown as
lines, and 95% confidence intervals shaded in similar colors, Homes
located 2—4 miles from a LSPVP are once again the omitted category.
Despite some noise in the estimates based on sales that occurred four or
five years prior to LSPVP construction, in general there is very little
evidence that home values were trending lower prior to the construction
of a LSPVP: all of the estimated pre-treatment effects are small in
magnitude and statistically insignificant. The Jack of differential trend-
ing prior to the installation of a LSPVP provides evidence that our main
identification assumption—the parallel trends assumption—holds.
Fig. 7 also shows a relatively clear decline in home values that starts
shortly after the beginning of LSPVP construction and continues up to six
years post construction, The negative impact of LSPVPs on home values
is particularly pronocunced for homes located O to 0.5 miles from a
LSPVP where we see home values declining by 4 percent six years after
LSPVP construction,’

4.3, Heterogeneity analyses results

Fig. 8 shows results from all the heterogeneity analyses alongside the
base model results; for ease of visualization, only the coefficients and
95% confidence interval for the 0-0.5 distance bin are shown, while
Table 5 through Table 8 show more detailed results for each heteroge-
neity analysis. As shown in Table 5, which shows base model results for
individual states, changes in sales price are not statistically significant
for CA, CT, and MA. However, MN, NC, and NJ, show a statistically
significant negative effect of 4%-5,6%, more than double that of the
average across all states in the base model. In Table 6, where we examine
potential heterogeneity by predominant prior land use of the nearest
LSPVP,we find that statistically significant home value reductions are
only observed for homes nearest to LSPVPs that are sited on previously

8 When investigating results for individual states, both for the event study
(section 3.2.3) and the heterogeneity analyses (section 3.2.4), our results
largely agreed with the results for the full 6 state sample. However, our indi-
vidual state estimates suffer from small sample sizes in individual time and
distance categories for the event study and in individual subcategaries for the
heterogeneity analyses, so results are [ess reliable, Therefore, we do not present
them in this paper. Results for individual states are available upon request from
the authors,
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Table 4
Average effect of LSPVP construction and proximity on homte prices for all six states. Standard errors are clustered at the project cohort level and are in parentheses,
Significance levels; ***p < 0.01, **p < 0.05, *p < 0.1

Dependent varlable: éhe logarithm of house Base madel Including 0-0.25 mi distance  Including quarter-year-project Including amenities and disamenities
prices (1} bin cohort FEs vector
Distance between home and LSPVP; [0 mi, —0.0226%**
.25 mi) (6.00767)
bistance between home and LSPVP; [0.25 mi, --0.0133%*
0.5 mi) (0.00641)

Distance between home and LSPYP: [0 mi, 0.5 —(.0154%* —0.0171*%%* —0.0170%%*
mi) {0.00630) (0.00642} (0.00589)
Distance hetween home and LSPVP: [0.5 mi, 1 —0,00820%* —0.00820** —0.00941** —0,00087%*
mi} {0.00413) (0.00413) (0.00424) {0.00403)
Distance between home and LSPVP: [1 mi, 2 —0.000841 —0.000841 -0.00179 —0,00131

mi) (0.00226) (0.00226) (0.00234) (0.00225)
Home characteristics ' v v v
Distance-project cohort FEs ' v ' v
Sale year-project cohort FEs " v s
Sale quarter-project cohort FEs ' v v
Census block group FEs v s v 'd
Sale year-sale quarter-project cohort Fils 's
Amenities and disamenities v
Observations 1,832,888 1,832,888 1,826,915 1,778,533
R* 0.835 6.835 0.839 0.835

r? = 0.835, observations = 1,832,888

Changein
price
compared
to sales
that occurred
2-4mi
away from
the nearest

LSPVP (34)
-2

4

-6

-5 % 3 -2 - o 1 2 3 4 5 6
Sale date - LSPVP construction date (years)

Distance batwesn home and nearest LSPVP
g5 -1mi m— 1w 2 TR @ indicates statistical significance (p < 0.05)

0 - 0.5

Fig. 7. Average effect of proximity to LSPVP by year of sale relative to year of LSPVP construction; shaded area represents 95% confidence interval; x-axis label
represents lower bound of year range (e.g. —5 refers to all transactions that occurred [-5, —4) vears before the construction date of the nearest LSPVP),

agricultural land.® These findings are consistent with the results in potential heterogeneity in property value impacts by the size of a LSPVP
Table 7, which shows that statistically significant effects were only project. Specifically, we split the sample based on LSPVP areas and es-
observed for homes located in rural areas. Finally, in Table 8 we examine timate separate models for homes located near LSPVPs that are above or
below the median LSPVP area in our sample. Adverse effects are only
observed for LSPVPs with an area larger than the median area of all

? We also tested the base model for a sample of only homes nearest to LSPVPs
on previously forested land (NLCD classes of Deciduous Forest, Evergreen
Forest, or Mixed Forest) and found no statistically significant results with p <
a.1.
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Table 5
Effect of LSPVP construction and proximity on home prices in Individual states, using base model specification. Standard errors are clustered at the project cohort level
and are in parentheses. Significance levels: ***p < 0.01, **p < 0,05, *p < 0.1

Dlependent varlable: the logarithm of house prices CA CT MA MN NG NJ
Distance between home and ESPVP: [0 mi, ¢.5 mi) 0,00899 0,0161 --0.0144 —0.0395** —0.0576%4* —0,0555***
(0.0106} (0.0314) (0.00892) (0.0174} {0.01.48) (0,0114)
Distance between home and LSPVP: [(15 mi, 1 i} 0.000849 0.0234 —~0.00933%* —0.0209%* —0.0473%x —0.0135*
(0.00696) (0.0150) (0.00469) (0,00932) {0.0118) (0.00698)
Distance between home and LSPVP: {1 mi, 2 mi} 0.00296 0.0186%*% —0.00190 —(h0108* ~0.0117** —0.00487
(0.00384) (0.00785) (0.00319) (0.00625) {0,00570} (0.00331)
Chservations 931,735 34,135 291,403 74,905 203,005 297,677
R* 0.881 0.774 0.777 0.708 6.735 0,751
Table 6 Table 7
Average effect of LSPVP construction and proximity on home prices by pre- Average effect of LSPVP construction and proximity on home prices by home
dominant prior land use of nearest LSPVP to home, using base model specifi- urban, urban cluster, or rural designation, using base modei specification.
cation. Standard errors are clustered at the project cohort leve] and are in Standaxd errozs are clustered at the project cohort level and are in parentheses.
parentheses. Significance levels: ***p < 0.01, **p < 0.05, *p < 0.1 Significance levels: ***p < 0.01, **p < 0,05, *p < 0.1

Dependent variable: Greenfield  Agricultural Brownfleld Mixed Dependent varlable: the logazithm of  Rural Urban Urban

the logarithm of house prices cluster

house prices Distance between home and ISPVP: [0 ~0.0418%** 00324 —0,00350

Distance between —0.00646 —0.0302%** 0.0122 ~0.0439 mi, 0.5 mi) (0.0156) (0.0524) (0.00619)
home and LSPVP: (0.00960) (0.0107) {0.01593 (0.0445)

10 mi, 0.5 mi)

Distance between ~(,000991 ~0,0202%** —0.00909 ~0.00679 Distance between home and LSPVP: ~0.0201* 0.0221 _0.00342
home and LSPVP: (0.00480) (0.00629) {0.0170} (0.0342) [0.5 mi, 1 mi) (0.0119) (0.0316) (0.00437)
[0.5 mi, I mi) Distance befween home and LSPYP; [1  0,00775 —0,60597 0.00137

Distance between 0.000836 -0.00408 ~0.00483 —0.000377 mi, 2 mi) (0.00613) (0.00896) (0.00222)
home and LSPVP: (0.00248) (0.00498) {0.00739} (0.0191)

[1 mi, 2 mi)
Observations 151,792 79,279 1,592,715
R* 0.803 0.785 0.845
Observations 1,074,492 577,769 147,951 12,987

R? 0.843 0.833 0.860 0.828
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Table 8

Average effect of LSPVP construction and proximity on home prices by area of
LSPVP, using base model specification. Standard errors are clustered at the
project cohort level and are in parentheses. Significance fevels: ***p < 0.01, **p
< 0,08, *p < 0.1

Dependent variable; the LSPVP area < 50th LSPVP axen > 50th
logarithm of house prices  percentile of area percentile of area
(75,138 m?) (75,138 m?)

Distance between home —0.00737 —0.0305**

and L3PVP: [0 mi, G.5 (0.00694) (0.0138)

mi})
Distance befween home —0.00483 —0.0166**

and LSPVE: [0.5mi, 1 (0.00521) (0.00684}

mi}
Distance between home 0.00225 ~{.00841**

and LSPVP: [1 mi, 2 mi) (0.00287) (0.00344)
Observations 1,291,762 537,189
R? 0.841 0.833

unique LSPVPs in our sample!®,
5. Discussion

In this paper, we add to the growing body of research on the impact
of LSPVPs on residential home values. By assembling an analysis dataset
consisting of transaction data, an original dataset of LSPVP footprints, a
suite of environmental amenities and dis-amenities, urbanicity classifi-
cations, and historic land cover data, we answer two related research
questions.

First, we ask: what effect, if any, do LSPVPs have on residential home
prices? Across the six states in the study area, we observe that homes
within 0-0.5 mi of an LSPVP that transact after a LSPVP is constructed
decline in sale price by an average of 1.5% coempared to homes 2-4 mi
away. At closer distances of 0-0.25 mi, the average decline in property
values is 2.3%. This effect fades at further distances from a LSPVP; we
observe a small adverse effect for homes 0.5-1 mi away of 0.8%, and no
evidence of an effect at distances beyond 1 mi. Our estimates are robust
to choices of time FEs and we control for other landscape characteristics
that could impact property values. Our results are consisient with some
prior literature (Drées and Koster, 2021; Gaur and Lang, 2020) that find
an overall adverse impact of LSPVP construction on property values,

Second, we ask: does the effect of LSPVPs on home prices differ based
on the state, the prior land use on which a LSPVP is located, the size of
the LSPVP, or the urbanicity of a home? When locking at individual
states in our sample, we observe no effect on sales prices in CA, CT, and
MA, but find sale price reductions for homes 0-0.5 mi away from a
LSPVP of 4%, 5.8%, and 5.6% in MN, NC, and NJ, respectively. In those
states where we do observe sale price reductions, the effect fades as
distances from an LSPVP increases, as with the full 6 state model, When
separating transactions by the prior land use and the area of the LSPVP
to which they are closest, as well as by the urbanicity of the home, we
observe statistically significant effects only for transactions near LSPVPs
sited on previously agricultural land, transactions in rural areas, and
transactions near larger LSPVPs by area. We observe decreases of 3%,
4,2%, and 3.1% for homes within 0-0.5 mi of LSPVPs on previously
agricultural land, in rural areas, or near large LSPVPs, respectively,
compared to homes 2-4 mi away. In all three cases, these effects fade
with distance from a LSPVP. We observe no statistically significant effect

10 We also tested the base model for two additional samples: homes near very
large LSPVPs (areas greater than the 75th percentile of areas of unique ESPVPs
in our sample) and near very small LSPVPs (areas below the 25th percentile of
areas of unique LSPVPs In our sample). Bor both subsets of our data, we found
no statistically significant results with p < 0.1.

of LSPVP construction and proximity on home prices in other categories
for land use (greenfield, brownfield, or mixed land use sites), urbanicity
{urban or urban cluster regions), or LSPVP area (where areas fall below
the median LSPVP area in our dataset). Looking at the heterogeneity
results by land use and urbanicity may help us understand the hetero-
geneity we observe by state: the states where we observe no statistically
significant difference in sales price (in CA, CT, and MA} are also the
states with lower proportions of LSPVP development on agricultural
land (Fig. 3). CA additionally has very few transactions in rural areas
(Fig. 4).

Our heterogeneity analyses show that the property value impacts of
LSPVP development are highly contextual, and reinforce scholarly ar-
guments that research on public support for solar energy should consider
both project scale and proposed locations (Nilson and Stedman, 2022).
Specifically, our results point to the importance of understanding the
perceptions, economic impacts, and social dynamics of larger solar de-
velopments, rural developments, and developments built on previously
agricultural land. Broader social science scholarship can contextualize
these results: for instance, researchers have theorized that the siting of
renewable energy in nural areas can counter personal, cultural, and
political representations and understandings of rural landscapes (Batel
et al., 2015). Our observed heterogeneity may reflect how large, agri-
cultural, or rural developments potentially conflict more directly with
those representations than smaller, non-agricultural, or urban de-
velopments. Furthermore, our results with respect to land use connect to
an emerging literature on the co-location of solar and agriculture: sur-
veys show that residents in agricultural communities are more likely to
support solar development that integrates agricultural production
(Pascaris et al., 2022), though scholarly reviews note that our under-
standing of perceptions of solar-agricultural systems remains limited
(Mamun et al., 2022).

6. Limitations and future work

A key limitation of our research appreach is that we consider only
one aspect of the economic impacts of LSPVPs; property values, The
impacts of local energy development are also shaped by local tax reve-
nue and employment impacts, which have consistently been found to
result in positive benefits (Brunner et al,, 2021; Bruaner and Schweg-
man, 2022a, 2022b), as well as by LSPVP ownership structures, This
implies that homeowners can and do capitalize the positive impacts of
renewable energy into home prices. Because this analysis compared
home prices between homes around the same projects, any differences in
value as compared to homes not near any LSPVP, and thus not subject to
local tax or employment impacts, would have remained undiscovered,
Furthermore, to the extent that property value changes reflect the
revealed preferences of residents, they only reflect the preferences of the
subset of residents who are homeowners. Where homeownership rates
are lower — largely in urban areas, but in an increasing portion of rural
areas as well (Pendall et al,, 2016) - property value changes may not
reflect the preferences of neighbors to the extent that they do where
homeownership rates are higher. Considering these varied economic
impacts would necessitate methodologies and data collection beyond
the hedonic DIiD analysis used in this paper.

These limitations suggest two major avenues for future work, First,
more regearch attention is needed on the economic impacts of LSPVPs,
broadly understood to encompass dimensions such as tax revenue,
ownership structures, or employment, Added research on the local
economic impacts of LSPVPs can position our findings on the average
adverse impact of LSPVP development on home prices in a broader
context of economic benefits and burdens due to LSPVP development.
Second, more research is needed to understand the heterogeneity that
we ohserve with respect to larger, agricultural, and rural LSPVPs. Here,
surveys, qualitative research, mixed-methods, and case study-based
approaches may indicate how neighbors of LSPVPs engage differently
with their nearby solar installation based on its size, land use, or the
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urbanicity of their home.
7. Conclusion and policy implications

This paper provides some of the first comprehensive evidence on the
impact of LSPVPs on residential home values. Specifically, we ask: (1)
what effect, if any, do LSPVPs have on residential home prices and {2)
does the effect of LSPVPs on home prices differ based on the prior land
use on which an LSPVP is located, the size of the LSPVP, or the urban-
icity of a home? In our six-state study area (CA, CT, MA, MN, NC, NJ),
we find that homes within 0.5 mi of LSPVP experience an average home
price reduction of 1.5% compared to homes 2-4 mi away; statistically
significant effects are not measurable over 1 mi from a LSPVP, These
effects are only measurable in certain states (MN, NC, and NJ}, for
LSPVPs constructed on agricultural land, for larger LSPVPs, and for rural
homes.

Our study extends the existing literature in three ways. First, we
consider a larger sample, both in terms of transactions and LSPVPs, than
prior studies. Our six-state study area encompasses 53% of the total MW
nameplate capacity of PV generators in the U.S,, and our analysis
included evidence from over 1,500 LSPVPEs and over 1.8 million home
transactions. The scope of our dataset allows us to provide average
impact estimates for a much larger set of LSPVP projects within the
United States, Second, to our knowledge, our study is the first study on
LSPVP property values impacts to use a dataset of LSPVP footprints (as
opposed to point locations or approximations of LSPVE area using cir-
cular buffers). By constructing and using footprint data, we can more
precisely assess the land area and prior land use of LSPVPs, as well as
reduce measurement error when calculating distances between homes
and a I.SPVP. Finally, we employ a stacked DID specification with bin-
by-project cohart FEs, which not only advances the methodology used
for this type of analysis but also addresses recent concerns over DiD
specifications that rely on staggered timing of treatment.

Our findings have two main policy implications. First, they point to
the need for policy and development measures to ameliorate possible
negative impacts of LSPVP development in some contexts. Our results
suggest that there are adverse property value impacts of LSPVP con-
struction for homes very close to a LSPVP and those predominantly in
rural agricultural settings around larger projects. But we find that most
impacts fade at distances greater than 1 mile from a LSPVP, In some
cases — for homes near large LSPVPs, and in the states of MN and NC -
negative effects persist at distances greater than 1 mile but are smaller
than they are at nearer distances to a LSPVP. These results suggest that
care should be taken in siting LSPVPs near homes in some contexts,
Developers or policymakers considering siting LSPVPs very close to
homes have several tools to employ, such as compensation schemes with
neighbors and landscape measures like vegetative screening.

Second, the heterogeneity analyses reveal the importance of place
and project-specific assessments of LSPVF development practices.
Although we find adverse impacts of LSPVP construction on property
values overall, we notably find no evidence of impacts in three states in
our study area — including in CA, which alone accounts for over half of
the transactions in our dataset. On the other hand, we do see evidence of
adverse property value impacts of LSPVPs in the other three states in our
dataset — including in MN, despite MN having arguably the most
restrictive state-wide laws on LSPVP development in high-value agri-
cultural areas of the states in our study area (Bergan, 2021), While our
sample for individual states was too small to conclusively explore het-
erogeneity within states, our overall heterogeneity analysis suggests that
adverse impacts of LSPVP development are present specifically in rural

areas, where LSPVP displaces agricultural land uses, and where LSPVP
installations are larger, For policy-makers, this heterogeneity may point
to the importance of carefully considering siting strategies for rural,
large, or agricultural installations - for instance, by exploring ways to
co-locate agricultural land uses and solar development. However, this
heterogeneity does not mean that economic impacts are negligible
where property value impacts were insignificant (CA, CT, MN, as well as
urban, non-agricultural, and smaller developments): as discussed in
section 6, many economic impacts remain undiscovered by our meth-
odology, some of which might increase home values, and future
policy-relevant research is needed to understand the economic impacts
of LSPVPs, broadly construed.

By combining a novel dataset of LSPVP footprinis with home trans-
action data, our analysis provides comprehensive evidence that LSPVPs
have an average adverse effect on home prices, but notably shows that
these impacts are not uniform across geographies, land uses, or LSPVP
size. In doing so, we contribute to the emerging literature on the eco-
nomic impacts of LSPVPs and point to Important avenues for future
policy discussions and research,
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Appendix

Table A1
Retention criterla for transactions

Condition for retentfon

Rationale

Coordinate values are populated
Land area, year built, and home square footage are populated

Coordinates appear 20 times or less

Property type is residential {including single family residence, condominium, duplex,
apartment}

Transaction is categorized as arms length

Year of sale between 2000 and 2021

Sale amount is greater than $5000 or the 1st percentiie of safe price (whichever vatue is
higher) and less than the 95th percentile of sale amount values within a given state

Sale armnount per unét area of Hvlng space s greater than the 1st percentile and less than
the 99th pereentile of sala amount per unit area of Hving space values within a given
stafe

Land area {s greater than the 1st percentile and less than the 99th percentile of land area
values within a given state

Property was built before 2020, and after the 1st percentile of values for year built within
a glven state

Sale amount I3 greater than the mortgage ameount, or mortgage amount is missing

Land area is greater than Hving space area

Age of property {sale year minus year built) is non-regative

Both variables representing land area converge within 0,01 acres

Deed is not categorized as foreclosure

Sale occurred over one year after last recorded sale for that property

Property address was not determined from mail

Coordinates are needed to obtain distances between homes and LSPVE, amenities, and dis-
amenities

Land area, year built, and home square footage are essential property characteristes to
control for in analysis

Repeated, identical coordinates for multiple properties may indicate data quality issue
Analysis only considers homes (i.e. residential properties) sald in arms length transactions
after the year 2000

Removing outliers from analysis

Any other relationship (between sale amount & mortgage amount, [and area & living space
area, sale year & year built, set of variables representing land area} may Indicate data
quality issues

Sale amount in a foreclosure may not accurately represent the value of a home
Removes potentially “flipped” homes, or homes that undergo a rapid renovation and are
re-sold, from dataset; for those homes, characteristics in CoreLogic dataset may not be
representative of characteristics after renovation

Address detenmined from mail may reflect the address of an absentee owner, not of the
physical property location

Table A.2
Amenity and dis-amenity data sources

Reference

Amenity/dis-amenity

Data source

Pata description

Aviation noise
Road noise

Flood zones

Municlpal, industrial,
and transfer landfills
State and national parks

Nuclear power
generation facilitles

Coal power generation
factlities

Coastline

Lakes

High-voltage lines

U.S. Department of
Transportation

1.5, Federal Emergency
Management Agency
118, Depariment of
Homeland Security

Esri

Natlonal Institute of Health
U.5. Environmental

Protecton Agency
ABB Group

Raster representlng approximate average noise energy due to transportation nolse
sources over a 24-h perlod at the receptor locations where noise is computed, expressed
in decibels (dB}

Categorizes areas by likelihood of flood, ranging from minimal risk to 26% chance of
flooding over the life of a 30-year morigage

Provides locations of active permitted municipal solid waste facilities and construction
and demotition debris facilities.

Provides boundaries of parks and forests in the United States at the national, state,
regional, and local level

Provides locations of 1.5, commercial nuclear power plants

Facility data (as of 2017} where primary or secondary fuel type is coal-refated (e.g.,
Coal, Coal Refuse, and Petroleum Coke),

Locations of .S, coastling, including bays, river outlets, and Great Lakes

Locations of 115, lakes, represented as polygons

Transmission and distribution lines with a voltage of 100 V or greater, represented as
polylines

{U.8Department of
Transportabdon, 2020)

Federal Emergency
Management Agency (2021)
Department of Homeland
Security (2020)

Esel (2021}

Hochstein and Szezur {2006)
(1.5, Environmental

Protection Agency, 2021)
ABB Group (2020)
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Fig. A.1. Satelite imagery showiag examples of LSPVP centroids (blue dots) and polygons (yeliow shaded areas) near homes including homes that transacted during

our study period (pink dots): (a) McGraw-Hill Solar Parm, NJ and (b) Intel Folsom, CA

Table A.3
Summary of dependent variables and property characteristics, CA
Varlable Descziption Mean 5td. dev. Min, Med. Max.
Sp Sate price (§) $457,797.53 $403,489,03 $35,500.00 $350,000.00 $3,998,000.00
Esp iog of sale price 12,76 0.75 10.48 12.77 15.2
Lsf Living area (ft%) 1868.69 1026.22 102 1654.00 98,694.00
Acres Land area (acres) 0.336 0.7 0.018 0,165 7.231
Age Age of home at ime of sale (years) 36.94 24.79 0 34 112
Agesq Age of home at time of sale, squared (years®) 1979.42 2233.94 0 1156.00 12,544,00
Salesqtr Quarter of sale 2.23 0.88 1 2 4
Salesyr Year of sate 2014 3 2003 2015 2020
Table A.4
Summary of dependent variables and property charactexistics, CT
Varlable Description Mean Std. dev. Min, Med, Max,
Sp Sale price () $283,251,18 $184,202.97 $36,000.00 $239,900,00 $1,640,000.00
Lsp log of sale price 12.4 0,56 10.49 12,39 1431
Lsf Living area {ft%) 1916.21 951.46 196 1669.00 35,170.,00
Acres Land area (acres) 0.818 1.114 .07 0.41 9,51
Age Age of home at ime of sale {years) 59.74 33.65 1] 58 212
Agesq Age of home at time of sale, squared (years®) 4700,55 5311.95 o 3364.00 44,944.00
Salesgtr Quarter of sale 2.32 0.83 1 2 4
Salesyr Year of sale 2017 2 2011 2018 2020
Table A.5
Summary of dependent variables and property characteristics, MA
Variable Deseription Mean Std. dev. Min. Med. Max.
Sp Sale price (§) $428,122.04 $284,039.71 $5100.00 $360,000.00 $2,199,000.00
Lsp leg of saie price 12.78 0.63 8.54 12.79 4.6
Lsf Living area flia] 2019.36 961.96 173 1802.00 35,721.00
Acres Land area {acres) 0.584 0.704 .03 0,315 6.6
Age Age of home at time of sale (years) 62.74 38,25 o 58 209
Agesg Age of home at time of sale, squared (years®) 5399.73 5906.47 ¢ 3364.00 43,681.00
Salesqir Quarter of sale 2.35 0,84 1 2 4
Salesyr Year of sale 2015 3 2005 2016 2020

|
|
|
3
|

z
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Table A6
Summary of dependent variables and property characteristics, MN
Varlable Ttescription Mean 5td, dev, Min. Med. Max.
Sp Sale price ($) $274,027.53 $152,774.95 $5500.00 $240,000.00 $1,299,000.00
Isp tog of sale price 12.38 0.56 8.61 12.39 14.08
Lsf Living area (i%) 1956.58 978.6 155 1740.50 42,840,00
Acres Eand area {acres) 0.612 1316 0.02 0.26 11.87
Age Age of home at time of sale {years) 42,03 3rz1 0 35 134
Agesq Age of home at time of sale, squared (vears®) 2739.86 3587.53 0 1225.00 17,956.00
Salesqtr Quarter of sale 231 .82 i 2 4
Salesyr Year of sale 2016 2 2010 2016 2020
Table A7
Summary of dependent variables and properiy characteristics, NC
Variable Description Mean Std, dev., Min, Med. Max.
Sp Sale price (§) $233,970.66 $169,170.45 $5050.00 $194,000.00 $1,499,500.00
Lsp iog of sale price 1212 0.75 8.53 12.18 14.22
Lsf Living area (i) 2091.02 1110.70 150 1852.00 120,215.00
Acres Land area (acres) 0.788 1.437 G.021 0.36 14,14
Age Age of home at time of sale (years) 29,48 24.08 ] 22 114
Agesq Age of home at time of sate, squared (years?) 1448.56 2083.56 [ 484 12,996.00
Salesqtr Quarter of sale 2,26 0.86 1 2 4
Salesyr Year of sale 2016 3 2004 2016 2020
Table A.8
Summary of dependent variables and property characteristics, NJ
Variable Deseription Mean Std. dev. Min. Med. Max.
Sp Sale price ($) $390,953.28 $243,373.52 $5143.00 $340,000.00 $1,599,999,00
Lsp log of sale price 12.68 .66 B.55 12.74 14.29
Lsf Living area (ft%) 1959.42 868.99 160 1786.00 19,176.00
Acres Land area {acres) (1393 0.656 0.006 0.185 6,167
Age Age of home at ime of sale (years) 56.92 30.02 U] 57 139
Agesq Age of home at time of sale, squared (years®) 4140.35 3664,38 o 3245,00 19,321,00
Salesgtr Quarter of sale 2,31 0.86 1 2 4
Salesyr Year of sale 2014 4 2004 2014 2020
Table A9

Categorical variables representing property characteristics (* = omitted
category in regressions)

Variable Category

Fultbaths Number of full bathrooms missing®
1 full bathroom
2 full bathrooms
3 full bathrooms
4 full bathrooms
> 5 full bathrooms
Actype Air conditioning code missing*
Central AC
AC type unknown
Refrigeration AC
Separate AC system
No AC
Evaporative AC
All other types of AC
Gonsirtype Constraction type missing*
Wood construction type
Frame constructien type
Wood metal/frame constrection type
AH other construction types
Heattype Heating type missing®
Central heat
Forced air
Unknown heating type
Forced hot water

{continued on next page)
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Table A9 (continued)

Varizble

Category

Extwalltype

Fireplace

Garagecode

Storles

View

newconstruction

Heat pump

Hot air

Floor/wall furnace

No heat

Steam

All other heating types
Exterior wall type missiug*
Stucce

Frame

Vinyl

Aluminum/vinyl

Woed siding/shingle
Brick

Aluminum siding

Wood siding

Waood

All other wall codes

o fireplace indicated*
Hireplace present
Garage type missing*
Undefined garage type
Attached

Attached frame
Undefined type - 2 car
Detached

Finished

Basement

Carport

Undefined type -1 car
Frame

Attached finished
Attached garage/carport
All other garage codes
Number of stories missing*
0 to 1 stories

1 to 2 stories

2 to 3 storles

>3 stories

View category iissing*
Average view

All other view categories
New constructon not indicated*
New construction
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Via email
To: Town of Pine Plains Planning Board
¢/o Michael Stabile, Planning Board Chairman
From: Frank Fish FAICP, Principal
Sarah Yackel, AICP, Principal
Subject: Pulvers Corners Solar — Special Use Permit Conditions
Date: September 29, 2023

As discussed at the September 27, 2023 Planning Board meeting, below please find a revised list of draft
special use permit conditions for the Pulvers Corners [ and Ii Solar Project Special Use Permit. This fist contains

edits and additions made by the Planning Board, as follows:

10.

11.

The Applicant shall construct the Project in accordance with the June 5, 2023 Site Plan, as amended.

The Applicant shall provide a perpetual conservation easement on the entire 172-acre Project Site as
described in the June 16, 2023 Property Conservation Plan. This includes the permanent protection of 70
forested acres and the remaining area as agricultural fields.

The Project shall be designed in accordance with the New York State Fire Code to ensure accessibility for
EMS vehicles.

The Applicant shall design and construct the proposed stormwater facilities in accordance with the
Stormwater Pollution Prevention Plan (“SWPPP”), as revised June 5, 2023.

The Applicant shall incorporate erosion control measures pursuant to the NYSDEC's New York State
Standards and Specifications for Erosion Control to mitigate any potential adverse impacts.

The Applicant shall limit tree clearing activities to between November 1 and March 31 to ensure potential
direct impacts to the Indiana and Northern Long-Eared Bats are avoided.

The Applicant shall construct a wildlife friendly fence as shown on the Site Plan to allow small mammals,
insects, and other species to freely travel throughout the project site.

The Applicant shall provide bat boxes on the Project Site as shown on the Site Plan.

The Applicant shall install supplemental vegetative screening to the existing forested areas to minimize
visual impacts to the best extent practicable as shown on the Site Plan.

The Applicant shall comply with the Construction Noise Mitigation Plan dated April 7, 2023 which reduces
construction hours to 8:00 AM fo 6:00 PM Monday through Saturday and also requires that noisy
construction activities such as tree clearing and grading will only take place on weekdays.

The Applicant shall comply with the Tree Disposal Plan dated June 5, 2023, which includes best practices
outlined in the May 8, 2023 Tree Survey completed by Hudson Valley Forestry.

1|Page

MEMORANDUM




BFJ Planning MEMORANDUM

12. No herbicides or pesticides shall be used in the operation and maintenance of the Project.

13. The Applicant shall comply with Construction Mitigation for Agricultural Lands (revised 10/18/2019)
(“NYSDAM Guidance”), which requires an Environmental Monitor (“EM”) be designhated to oversee
construction, restoration, and follow-up monitoring in agricultural areas. The EM shall be an individual
with a confident understanding of normal agricuftural practices and able to identify how the project may
affect the site and the applicable agricultural practices with experience with soil penetrometer for
compaction testing and record keeping. Following construction, the EM shall determine appropriate
activities to return the area to agricultural use. These activities may include decompaction, rock removal,
and revegetation.

14. The Applicant shall comply with all requirements of the Operation and Maintenance Plan dated February
8, 2022 and Decomissing Plan dated November 21, 2022,

15. The Applicant must apply for and receive a Commercial Access Highway Work Permit from the New York
State Department of Transportation including a Maintenance of Traffic Plan.

16. The Applicant shall include anti-glare coating on all solar panels as presented in the Solar Panel data sheets
provided to the Planning Board on March 28, 2023,

17. No change shall be made on the Project Site to add an improvement or to change the footprint or location
of any improvement shown on the Site Plan dated June 5, 2023, as amended and approved by the Planning
Board unless approval for the addition or change is first obtained from the Planning Board.

18. The Applicant shall provide a maintenance and performance bond, acceptable to the Town Attorney and
Town Board for all site work as shown on the June 5, 2023, as amended.

19. The Applicant shall enter into a payment in lieu of taxes (PILOT) agreement with the Town Board.

20. In the case of a catastrophic event which harms or destroys part or all of the Project Site and/or site
improvements, a revised site plan shall be submitted to the Planning Board for review and approval before

any reconstruction can ocecur.
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